

CONGESTED HIGHWAYS ACTION RESPONSE TEAM

STATE HIGHWAY ADMINISTRATION

C++/Java Performance Comparison for
Distributed ITS Control Systems

Contract DBM-9713-NMS

TSR # 9901961
Document # M361-AR-002R0

March 30, 1999
By

Computer Sciences Corporation and PB Farradyne Inc

JavaC++PerformanceComparison.doc 10/16/17 i

Table of Contents

1 Introduction .. 1

2 Environment ... 2

3 Tests .. 3

3.1 Integer Math Test ..3

3.2 Floating Point Math Test...3

3.3 String Manipulation Test ..3

3.4 Object Method Call Test ...4

3.5 Polymorphic Method Call Test ...4

3.6 Dynamic Type Test ..5

4 Conclusion .. 6

Acronyms .. 7

Appendix A - Test Output ... 8

A.1 Java Test Output ...8

A.2 C++ Test Output ...9

Appendix B - C++ Source Code ... 12

B.1 SPEED.CPP ...12

B.2 OBJECTS.H...21

Appendix C - Java Source Code .. 22

C.1 SPEED.JAVA ..22

C.2 BASEOBJECT.JAVA...31

C.3 DERIVEDOBJECT.JAVA...32

C.4 MUTABLEOBJ.JAVA ...33

JavaC++PerformanceComparison.doc 10/16/17 1

1 Introduction

The purpose of this document is to compare the performance of the Java and C++ languages
as they pertain to the development of an ITS control system. To that end, the tests included in
this comparison have been developed to investigate the performance characteristics of those
language features that are most frequently utilized in the creation of an ITS control system. The
results of each test will be presented and described in detail, along with a statement regarding
the significance of the test and a detailed discussion of why the test was considered important
enough to include in this comparison.

JavaC++PerformanceComparison.doc 10/16/17 2

2 Environment

The environment for these tests was as follows:
Dell Dimension XPS R400 PC
400 MHz Pentium II processor
192 MB RAM
Microsoft Visual C++
Sun JDK 1.2

All of the C++ software was built using full speed optimization. This build configuration
is typically used when we build a system for field deployment. The Java code was run
using the Just-In-Time (JIT) compiler that is shipped with the Java Runtime
Environment.

JavaC++PerformanceComparison.doc 10/16/17 3

3 Tests

3.1 Integer Math Test

Most of the mathematical operations performed in a software system are performed on integer
values. Such operations include calculating index offsets, window coordinates, counter
variables and time based calculations. Thus, it would be easy to rule out a language that
performed poorly on calculations of this nature. The test was designed to test the array
indexing and integer math capabilities inherent in the language. An array of 100000 integers
was created. The test then copied each element of the array into a local integer variable,
incremented it by one and copied the integer back into the array. Next, the test took another
pass through the array, this time copying each element to a local variable, decreasing the value
of the local variable by one and then copying it back into the array. On the third pass through
the array, the test copied the value from the array to the local variable, multiplied it by two, and
copied it back into the array. On the fourth and final pass through the array, the test copied the
value to a local variable, divided it by two, then placed it back into the array. This test
performed 400000 mathematical operations on array elements, 400000 array index operations,
and 800000 integer copies. The entire test was run 500 times and the following results
represent the average time required to perform the test.

C++ - 8 Milliseconds
Java - 10 Milliseconds

3.2 Floating Point Math Test

Although floating point math is not nearly as pervasive in an ITS control system as integer math,
it is heavily utilized in some key components; namely the system map and incident detection
algorithms. The system map uses floating-point variables to store the geographical locations of
objects and bounding rectangles of maps. Calculations are performed to determine if a
particular object is within a particular bounding rectangle, distance between points, etc. The
incident detection algorithm performs floating-point math to “smooth" new detector data in with
historical data for a link each time new detector data is received. The test was designed to test
the array indexing and floating-point math capabilities inherent in the language. An array of
100000 doubles was created. The test then copied each element of the array into a local
double variable, multiplied it by itself and copied the resulting double back into the array. Next
the test took another pass through the array, this time copying each element to a local variable,
dividing the value by 3.14 and then copying it back into the array. On the third pass through the
array, the test copied the value from the array to the local variable, added it to itself, and copied
it back into the array. On the fourth and final pass through the array the test copied the value to
a local variable, subtracted 3.14, and then placed it back into the array. All tolled, this test
performed 400000 floating-point mathematical operations on double values, 400000 array index
operations, and 800000 double variable copies. The entire test was run 500 times and the
following results represent the average time required to perform the test.

C++ - 17 Milliseconds
Java - 30 Milliseconds

3.3 String Manipulation Test

For the CHART II system the speed with which string manipulations can be performed is
important because each CORBA object is referenced using a string identifier known as the
Interoperable Object Reference (IOR). Thus, many comparisons must be done on string values

JavaC++PerformanceComparison.doc 10/16/17 4

to determine if two object instances represent the same remote object. Additionally, it is
common to run string-parsing algorithms on DMS and HAR messages. The String Manipulation
Test was designed to compare the performance of string comparisons and string alterations
between the Java supplied String object and the MFC CString object. The MFC CString object
was chosen because it is highly probable this is the string variant that would be used for this
project. Additionally, the GUI would definitely be implemented using MFC and, thus, the CString
class. Each iteration of the test performs the following processing 10000 times: initialize two
string objects to the constant string “Initial string for manipulation test”, compare the string
objects to each other, print an error message if they do not match. Next, convert one of the
strings to all upper case characters, compare the strings to each other again, print an error
message if they do match. The test was repeated 500 times and the following results represent
the average time to complete the test.

C++ - 60 Milliseconds
Java - 76 Milliseconds

3.4 Object Method Call Test

This test was designed to test the efficiency with which the language passes objects as
parameters and invokes statically bound methods. This test is important because an object
oriented software system is composed of objects and these objects are passed to functions as
parameters which, in turn, may invoke methods on the object in order to get it to perform a task
or alter it’s current state. Those methods that alter the state of an object are commonly referred
to as mutator functions and those objects that define mutator functions are commonly referred
to as mutable objects. This test, then, creates a mutable object, passes it to a function as a
parameter and (the function) invokes a mutator method on that object. The object is passed by
reference in C++. In Java, it is not possible to pass an object any other way. Additionally, the
C++ mutator method was declared inline in order to fully optimize the call. This entire process is
repeated 500000 times to comprise one running of the test. The test was run 500 times and the
results that follow represent the average time required to complete the test.

C++ - 18 Milliseconds
Java - 7 Milliseconds

3.5 Polymorphic Method Call Test

This test was designed to test the efficiency with which the language handles the
invocation of methods that are dynamically bound. A dynamically bound method is one
whose actual implementing class is not known at compile time. Polymorphism is
fundamental to the design and implementation of reusable object oriented software and
is the cornerstone upon which the CHART II user interface prototype was built and upon
which the entire CHART II system will be built. Polymorphism allows the map
component to treat all objects uniformly. The map may simply tell each object to
Render() itself and it is up to the DMS class to Render a DMS or the HAR class to
render a HAR object. To the map it does not matter and this allows us to later add AVL
objects which support the Render() polymorphic method without altering the map code.
This test creates a new object of a derived type and stores it in a base class pointer. It
then invokes a polymorphic method of that object 500000 times. The test was
performed 500 times and the results presented below represent the average time to
complete the test.

JavaC++PerformanceComparison.doc 10/16/17 5

C++ - 10 Milliseconds
Java - 8 Milliseconds

3.6 Dynamic Type Test

Dynamic type testing is a particularly useful tool in the implementation and design of
object oriented software systems. It allows the program to test a heterogeneous
collection of base class objects and find if any of them are of a particular type. A typical
use of dynamic type checking would be to test a collection of device objects to see
which of them are actually capable of being used in an incident response scenario
(which of them supports a particular interface). Although this type of checking can be
approximated through type tags or collections of polymorphic methods each of these
methods of performing dynamic type testing has significant drawbacks associated with
it. This test creates an instance of a derived class object and stores it in a base class
pointer. The base class pointer is tested 500000 times to see if it is actually pointing to
an object which is an instance of the derived class (it is). If it is an instance, the pointer
is cast to a derived class object and a method that is defined only in the derived class is
invoked. If it is not an error message is printed. In C++ dynamic type testing is
accomplished via the dynamic_cast<> operator and requires that your code be
compiled with the RTTI (Run Time Type Identification) compiler flag enabled. Java
supplies the instanceof operator for this functionality. The test was run 500 times and
the results presented are the average time to complete the test.

C++ - 224 Milliseconds
Java - 8 Milliseconds

JavaC++PerformanceComparison.doc 10/16/17 6

4 Conclusion

The results of these performance tests indicate that C++ is slightly more efficient than
Java at low-level computational tasks but that Java makes up for this by providing
superior support for object oriented design constructs. It is the opinion of the
development team that either language would perform in an adequate manner to
implement the CHART II system. We base this conclusion on the fact that the system is
distributed in nature and will, therefore, spend far more time waiting for data
transmission to and from remote system components than performing intense
calculations.

JavaC++PerformanceComparison.doc 10/16/17 7

Acronyms

API Application Programming Interface

AVL Automated Vehicle Location

AWT Advanced Windowing Toolkit

CHART Congested Highways Action Response Team

CORBA Common Object Request Broker Architecture

DMS Dynamic Message Sign

HAR Highway Advisory Radio

GUI Graphical User Interface

IOR Interoperable Object Reference

ITS Intelligent Transportation System

JDK Java Development Kit

JFC Java Foundation Class

JIT Just in Time

JNI Java Native Interface

MFC Microsoft Foundation Class

ORB Object Request Broker

RFP Request for Proposal

RTTI Run Time Type Identification

JavaC++PerformanceComparison.doc 10/16/17 8

 Appendix A - Test Output

A.1 Java Test Output

Java Language Performance Test Results

Performing int array test for 100000 elements.

This test will create an array of the specified number of elements

It will then iterate through all elements in the array four times.

The first time it will copy an integer out of the array, increment it

and copy it back into the array. The second pass will copy the element

out of the array, decrement it by one and copy it back into the array.

The third pass will copy the element out of the array, multiply it

and place it back in the array. The final pass will copy each element

divide it by two, and place it back in the array.

Average time for int array test is 10 milliseconds for 500 repetitions.

Performing floating point test for 100000 elements.

This test will create an array of the specified number of elements

it will then iterate through all elements in the array four times.

The first time it will copy a double out of the array, multiply it

by itself and copy it back into the array. The second pass will copy

the element out of the array, divide it by 3.14 then copy it back into the

array.

The third pass will copy the element out of the array, add it to itself

and place it back in the array. The final pass will copy each element

subtract 3.14 from it and place it back in the array.

Average time for floating point test is 30 milliseconds for 500 repetitions.

Performing string manipulation test for 10000 strings.

This test will copy a string into a temporary string. It will then

compare the two strings using a string sensitive comparison. Next it

will convert the temporary string to upper case. It will then compare

strings again.

Average time for string manipulation test is 76 milliseconds for 500

repetitions.

Performing mutable object test for 500000 method calls.

This test will create an object which has a single integer member

variable and a public method which, when called, increments this

member. The class of this object will also have a static method

which takes a mutable object as its lone parameter. This allows us

to test the efficiency with which the language passes parameters by

reference. The test creates a mutable object and passes it to the

class method which then invokes the mutator method on the passed object.

JavaC++PerformanceComparison.doc 10/16/17 9

Average time for mutable object test is 7 milliseconds for 500 repetitions.

Performing polymorphic test for 500000 method calls.

This test is designed to test the efficiency with which the language

handles method invocations which require dynamic binding. The test

creates a derived class object and assigns it to a base class pointer.

It then invokes a virtual method on the base class object which will

be handled by the overriding derived class method. Dynamic binding is

crucial to engineering reusable object oriented components.

Average time for polymporphic test is 8 milliseconds for 500 repetitions.

Performing dynamic type test for 500000 objects.

This test is designed to determine how efficiently the language allows

a program to determine if an object is an instance of a particular class

at run-time. This type of testing is done in java via the instanceof

operator which is a built-in language feature. The test will create an

instance of a derived class object and store it in a base class pointer.

It will then perform the dynamic cast to test if the object is a derived

class object. If it is, the test will call a method which is defined in the

derived class only. If it is not an error message will be printed

Average time for dynamic type test is 8 milliseconds for 500 repetitions.

A.2 C++ Test Output

C++ Language Performance Test Results

Performing int array test for 100000 elements.

This test will create an array of the specified number of elements

it will then iterate through all elements in the array four times.

The first time it will copy an integer out of the array, increment it

and copy it back into the array. The second pass will copy the element

out of the array, decrement it by one and copy it back into the array.

The third pass will copy the element out of the array, multiply it

and place it back in the array. The final pass will copy each element

divide it by two, and place it back in the array.

Average time for int array test is 8 milliseconds for 500 repetitions.

Performing floating point test for 100000 elements.

This test will create an array of the specified number of elements

it will then iterate through all elements in the array four times.

The first time it will copy a double out of the array, multiply it

by itself and copy it back into the array. The second pass will copy

JavaC++PerformanceComparison.doc 10/16/17 10

the element out of the array, divide it by 3.14 then copy it back into the

array.

The third pass will copy the element out of the array, add it to itself

and place it back in the array. The final pass will copy each element

subtract 3.14 from it and place it back in the array.

Average time for floating point test is 17 milliseconds for 500 repetitions.

Performing string manipulation test for 10000 strings.

This test will copy a string into a temporary string. It will then

compare the two strings using a string sensitive comparison. Next it

will convert the temporary string to upper case. It will then compare

strings again.

Average time for string manipulation test is 60 milliseconds for 500

repetitions.

Performing mutable object test for 500000 method calls.

This test will create an object which has a single integer member

variable and a public method which, when called, increments this

member. The class of this object will also have a static method

which takes a mutable object as its lone parameter. This allows us

to test the efficiency with which the language passes parameters by

reference. The test creates a mutable object and passes it to the

class method which then invokes the mutator method on the passed object.

Average time for mutable object test is 18 milliseconds for 500 repetitions.

Performing polymorphic test for 500000 method calls.

This test is designed to test the efficiency with which the language

handles method invocations which require dynamic binding. The test

creates a derived class object and assigns it to a base class pointer.

It then invokes a virtual method on the base class object which will

be handled by the overriding derived class method. Dynamic binding is

crucial to engineering reusable object oriented components.

Average time for polymorphic call test is 10 milliseconds for 500

repetitions.

Performing dynamic type test for 500000 objects.

This test is designed to determine how efficiently the language allows

a program to determine if an object is an instance of a particular class

at run-time. This type of testing is done in C++ via the dynamic_cast<>

operator which requires that the code be built with RTTI enabled. The

test will create an instance of a derived class object and store it in a

base class pointer. It will then perform the dynamic cast to test if the

object is a derived class object. If it is, the test will call a method

which is defined in the derived class only. If it is not an error message

will be printed.

JavaC++PerformanceComparison.doc 10/16/17 11

Average time for dynamic type test is 224 milliseconds for 500000 objects.

JavaC++PerformanceComparison.doc 10/16/17 12

 Appendix B - C++ Source Code

B.1 SPEED.CPP

#include "afx.h"

#include "time.h"

#include <iostream.h>

#include "objects.h"

#include "stdlib.h"

// method declarations

void doIntArrayTest();

unsigned int intArrayTest(unsigned int len);

void doMutableObjectTest();

unsigned int mutableObjectTest(unsigned int reps);

void doPolymorphicTest();

unsigned int polymorphicTest(unsigned int reps);

void doDynamicTypeTest();

unsigned int dynamicTypeTest(unsigned int reps);

void doFloatingPointTest();

unsigned int floatingPointTest(unsigned int reps);

void doStringTest();

unsigned int stringTest(unsigned int reps);

unsigned int clocks_to_millis(clock_t start_clock, clock_t end_clock);

//main method

int main(int argc, char* argv[], char *envp[])

{

 cout << "C++ Language Performance Test Results" << endl;

 cout << "*************************************" << endl << endl;

 doIntArrayTest();

 doFloatingPointTest();

 doStringTest();

 doMutableObjectTest();

 doPolymorphicTest();

 doDynamicTypeTest();

 return 1;

}

//driver for integer array test

void doIntArrayTest()

{

 int reps = 500;

JavaC++PerformanceComparison.doc 10/16/17 13

 unsigned int elems = 100000;

 unsigned int total_time = 0;

 cout << "Performing int array test for "<< elems << " elements." << endl

<< endl;

 cout << "This test will create an array of the specified number of

elements " << endl;

 cout << "it will then iterate through all elements in the array four

times." << endl;

 cout << "The first time it will copy an integer out of the array,

increment it" << endl;

 cout << "and copy it back into the array. The second pass will copy the

element" << endl;

 cout << "out of the array, decrement it by one and copy it back into the

array." << endl;

 cout << "The third pass will copy the element out of the array, multiply

it " << endl;

 cout << "and place it back in the array. The final pass will copy each

element" << endl;

 cout << "divide it by two, and place it back in the array." << endl <<

endl;

 for(int x = 0; x < reps; x++)

 {

 total_time += intArrayTest(elems);

 }

 cout << "Average time for int array test is "<< total_time/reps << "

milliseconds for " << reps << " repetitions." << endl << endl << endl;

}

/**

 This test is designed to test the speed of array manipulation

 and basic mathematical functions for basic types. While clocking

 it will create an array of the specified number of ints and walk

 it four times. Each time it will pull out an element and perform

 a basic mathematical operation, then it will replace the element

 in the array.

**/

unsigned int intArrayTest(unsigned int len)

{

 int test = 0;

 unsigned int x = 0;

 clock_t start_clock = clock();

 int *myints = new int[len];

 for(x = 0; x < len; x++)

 {

 test = myints[x];

 test++;

 myints[x] = test;

 }

 for(x = 0; x < len; x++)

 {

 test = myints[x];

JavaC++PerformanceComparison.doc 10/16/17 14

 test--;

 myints[x] = test;

 }

 for(x = 0; x < len; x++)

 {

 test = myints[x];

 test*=2;

 myints[x] = test;

 }

 for(x = 0; x < len; x++)

 {

 test = myints[x];

 test/=2;

 myints[x] = test;

 }

 delete[] myints;

 clock_t end_clock = clock();

 unsigned int millis = clocks_to_millis(start_clock, end_clock);

 return millis;

}

//driver for mutable object test

void doMutableObjectTest()

{

 int reps = 500;

 unsigned int calls = 500000;

 unsigned int total_time = 0;

 cout << "Performing mutable object test for "<< calls << " method calls."

<< endl << endl;

 cout << "This test will create an object which has a single integer

member" << endl;

 cout << "variable and a public method which, when called, increments this"

<< endl;

 cout << "member. The class of this object will also have a static method"

<< endl;

 cout << "which takes a mutable object as its lone parameter. This allows

us" << endl;

 cout << "to test the efficiency with which the language passes parameters

by" << endl;

 cout << "reference. The test creates a mutable object and passes it to

the" << endl;

 cout << "class method which then invokes the mutator method on the passed

object." << endl << endl;

 for(int x = 0; x < reps; x++)

 {

 total_time += mutableObjectTest(calls);

 }

 cout << "Average time for mutable object test is "<< total_time/reps << "

milliseconds for " << reps << " repetitions." << endl << endl << endl;

}

JavaC++PerformanceComparison.doc 10/16/17 15

/**

 This test is designed to test static method calls and simple

 object state change calls. While clocking it will create a

 new and call a static method which will call a mutator

 method on the object for the specified repititions.

**/

unsigned int mutableObjectTest(unsigned int reps)

{

 clock_t start_clock = clock();

 MutableObj mo;

 for(unsigned int x = 0; x < reps; x++)

 {

 MutableObj::MutateObject(mo);

 }

 clock_t end_clock = clock();

 return clocks_to_millis(start_clock, end_clock);

}

//Simple function to compute milliseconds from clock ticks...

unsigned int clocks_to_millis(clock_t start_clock, clock_t end_clock)

{

 clock_t ticks = end_clock - start_clock;

 double millisd = ((double)ticks/(double)CLOCKS_PER_SEC)*(double)1000;

 return millisd;

}

//driver for the polymorphic call test

void doPolymorphicTest()

{

 int reps = 500;

 unsigned int calls = 500000;

 unsigned int total_time = 0;

 cout << "Performing polymorphic test for "<< calls << " method calls." <<

endl << endl;

 cout << "This test is designed to test the efficiency with which the

language" << endl;

 cout << "handles method invocations which require dynamic binding. The

test" << endl;

 cout << "creates a derived class object and assigns it to a base class

pointer." << endl;

 cout << "It then invokes a virtual method on the base class object which

will " << endl;

 cout << "be handled by the overriding derived class method. Dynamic

binding is" << endl;

 cout << "crucial to engineering reusable object oriented components." <<

endl << endl;

 for(int x = 0; x < reps; x++)

 {

 total_time += polymorphicTest(calls);

JavaC++PerformanceComparison.doc 10/16/17 16

 }

 cout << "Average time for polymorphic call test is "<< total_time/reps <<

" milliseconds for " << reps << " repetitions." << endl << endl << endl;

}

/**

 The purpose of this test is to determine the efficiency with which

 the language processes method calls which require dynamic binding.

**/

unsigned int polymorphicTest(unsigned int reps)

{

 clock_t start_clock = clock();

 BaseObject *pmo = new DerivedObject();

 for(unsigned int x = 0; x < reps; x++)

 {

 pmo->polymorphicCall();

 }

 delete pmo;

 clock_t end_clock = clock();

 return clocks_to_millis(start_clock, end_clock);

}

//base class polymorphic call from poly call test... just prints an error

void BaseObject::polymorphicCall()

{

 //this should never happen

 cout << "Error call went to base class." << endl;

}

//override of polymorphic call in polymorphic call test

void DerivedObject::polymorphicCall()

{

 m_counter++;

}

//method which is declared only in the derived object... used in dynamic type

test

void DerivedObject::derivedOnlyCall() inline

{

 m_counter++;

}

//driver for the dynamic type test

void doDynamicTypeTest()

{

 int reps = 500;

 unsigned int objects = 500000;

 unsigned int total_time = 0;

JavaC++PerformanceComparison.doc 10/16/17 17

 cout << "Performing dynamic type test for "<< objects << " objects." <<

endl << endl;

 cout << "This test is designed to determine how efficiently the language

allows " << endl;

 cout << "a program to determine if an object is an instance of a

particular class" << endl;

 cout << "at run-time. This type of testing is done in C++ via the

dynamic_cast<> " << endl;

 cout << "operator which requires that the code be built with RTTI enabled.

The " << endl;

 cout << "test will create an instance of a derived class object and store

it in a" << endl;

 cout << "base class pointer. It will then perform the dynamic cast to

test if the" << endl;

 cout << "object is a derived class object. If it is, the test will call a

method" << endl;

 cout << "which is defined in the derived class only. If it is not an

error message" << endl;

 cout << "will be printed." << endl << endl;

 for(int x = 0; x < reps; x++)

 {

 total_time += dynamicTypeTest(objects);

 }

 cout << "Average time for dynamic type test is "<< total_time/reps << "

milliseconds for " << objects << " objects." << endl << endl << endl;

}

/**

 The purpose of this test is to determine the efficiency with which

 the language determines if an object is of a particular type.

**/

unsigned int dynamicTypeTest(unsigned int reps)

{

 clock_t start_clock = clock();

 BaseObject *pbo = new DerivedObject();

 DerivedObject *pdo = NULL;

 for(unsigned int x = 0; x < reps; x++)

 {

 pdo = dynamic_cast<DerivedObject*>(pbo);

 if(pdo != NULL)

 {

 pdo->derivedOnlyCall();

 }

 else

 {

 cout << "Test error: dynamic cast failure." << endl;

 }

 }

 delete pbo;

 clock_t end_clock = clock();

JavaC++PerformanceComparison.doc 10/16/17 18

 return clocks_to_millis(start_clock, end_clock);

}

//driver for the floating point test

void doFloatingPointTest()

{

 int reps = 500;

 unsigned int elements = 100000;

 unsigned int total_time = 0;

 srand((unsigned)time(NULL));

 cout << "Performing floating point test for "<< elements << " elements."

<< endl << endl;

 cout << "This test will create an array of the specified number of

elements " << endl;

 cout << "it will then iterate through all elements in the array four

times." << endl;

 cout << "The first time it will copy a double out of the array, multiply

it" << endl;

 cout << "by itself and copy it back into the array. The second pass will

copy" << endl;

 cout << "the element out of the array, divide it by 3.14 then copy it back

into the array." << endl;

 cout << "The third pass will copy the element out of the array, add it to

itself" << endl;

 cout << "and place it back in the array. The final pass will copy each

element" << endl;

 cout << "subtract 3.14 from it and place it back in the array." << endl <<

endl;

 for(int x = 0; x < reps; x++)

 {

 total_time += floatingPointTest(elements);

 }

 cout << "Average time for floating point test is "<< total_time/reps << "

milliseconds for " << reps << " repetitions." << endl << endl << endl;

}

/**

 This test is designed to test the speed of array manipulation

 and basic mathematical functions for floating point types. While

 clocking it will create an array of the specified number of doubles

 and walk it four times. Each time it will pull out an element and

 perform a mathematical operation, then it will replace the element

 in the array.

**/

unsigned int floatingPointTest(unsigned int elements)

{

 double *mydoubles = new double[elements];

 double temp = 0.0;

 for(unsigned int x = 0; x < elements; x++)

 {

 mydoubles[x] = 1.7567;

JavaC++PerformanceComparison.doc 10/16/17 19

 }

 clock_t start_clock = clock();

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp *= temp;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp /= 3.14;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp += temp;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp -= 3.14;

 mydoubles[x] = temp;

 }

 clock_t end_clock = clock();

 delete[] mydoubles;

 return clocks_to_millis(start_clock, end_clock);

}

//driver for the string test

void doStringTest()

{

 int reps = 500;

 unsigned int strings = 10000;

 unsigned int total_time = 0;

 cout << "Performing string manipulation test for "<< strings << "

strings." << endl << endl;

 cout << "This test will copy a string into a temporary string. It will

then " << endl;

 cout << "compare the two strings using a string sensitive comparison.

Next it " << endl;

 cout << "will convert the temporary string to upper case. It will then

compare " << endl;

 cout << "strings again." << endl << endl;

JavaC++PerformanceComparison.doc 10/16/17 20

 for(int x = 0; x < reps; x++)

 {

 total_time += stringTest(strings);

 }

 cout << "Average time for string manipulation test is "<< total_time/reps

<< " milliseconds for " << reps << " repetitions." << endl << endl << endl;

}

/**

 This test is designed to test the efficiency of string manipulations

 and comparisons.

**/

unsigned int stringTest(unsigned int reps)

{

 unsigned int x = 0;

 CString init_string("Initial string for manipulation test");

 CString cmp_string("Initial string for manipulation test");

 CString tmp_string = "";

 CString tmp_string2 = "";

 clock_t start_clock = clock();

 for(x = 0; x < reps; x++)

 {

 tmp_string = init_string;

 if(!tmp_string.Compare(cmp_string))

 {

 tmp_string.MakeUpper();

 tmp_string2 = tmp_string;

 if(!tmp_string2.Compare(cmp_string))

 {

 cout << "Test error strings should not be equal anymore..." <<

endl;

 }

 }

 else

 {

 cout << "Test error strings should be equal..." << endl;

 }

 }

 clock_t end_clock = clock();

 return clocks_to_millis(start_clock, end_clock);

}

JavaC++PerformanceComparison.doc 10/16/17 21

B.2 OBJECTS.H

#ifndef _OBJECTS_H_

#define _OBJECTS_H_

class MutableObj

{

 public:

 MutableObj():m_counter(0){};

 static void MutateObject(MutableObj &mo){mo.Mutate();}

 inline void Mutate(){m_counter++;}

 private:

 int m_counter;

};

class BaseObject

{

 public:

 BaseObject():m_counter(0){};

 virtual ~BaseObject(){};

 virtual void polymorphicCall();

 protected:

 int m_counter;

};

class DerivedObject : public BaseObject

{

 public:

 DerivedObject(){};

 virtual ~DerivedObject(){};

 virtual void polymorphicCall();

 virtual void derivedOnlyCall() inline;

};

#endif

JavaC++PerformanceComparison.doc 10/16/17 22

 Appendix C - Java Source Code

C.1 SPEED.JAVA

import java.lang.*;

public final class Speed

{

 //create a Speed object and invoke the test methods.

 public static void main(String[] args)

 {

 System.out.println("Java Language Performance Test Results");

 System.out.println("**************************************");

 System.out.println("");

 Speed s = new Speed();

 s.doIntArrayTest();

 s.doFloatingPointTest();

 s.doStringTest();

 s.doMutableObjectTest();

 s.doPolymorphicTest();

 s.doDynamicTypeTest();

 }

 //constructor for a speed method

 public Speed()

 {

 }

 //driver for the integer array and math test

 public void doIntArrayTest()

 {

 int reps = 500;

 int elems = 100000;

 long total_time = 0;

 System.out.println("Performing int array test for " + elems + "

elements.\n");

 System.out.println("This test will create an array of the specified

number of elements");

 System.out.println("it will then iterate through all elements in the

array four times.");

 System.out.println("The first time it will copy an integer out of the

array, increment it");

 System.out.println("and copy it back into the array. The second pass

will copy the element");

 System.out.println("out of the array, decrement it by one and copy it

back into the array.");

 System.out.println("The third pass will copy the element out of the

array, multiply it");

 System.out.println("and place it back in the array. The final pass

will copy each element");

JavaC++PerformanceComparison.doc 10/16/17 23

 System.out.println("divide it by two, and place it back in the

array.");

 for(int x= 0; x < reps; x++)

 {

 total_time += intArrayTest(elems);

 }

 System.out.println("");

 System.out.println("Average time for int array test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

 This test is designed to test the speed of array manipulation

 and basic mathematical functions for basic types. While clocking

 it will create an array of the specified number of ints and walk

 it four times. Each time it will pull out an element and perform

 a basic mathematical operation, then it will replace the element

 in the array.

 **/

 public long intArrayTest(int len)

 {

 int test = 0;

 int x = 0;

 //start the timer

 long start_time = System.currentTimeMillis();

 int[] myints = new int[len];

 for(x= 0; x < len; x++)

 {

 test = myints[x];

 test++;

 myints[x] = test;

 }

 for(x= 0; x < len; x++)

 {

 test = myints[x];

 test--;

 myints[x] = test;

 }

 for(x= 0; x < len; x++)

 {

 test = myints[x];

 test*=2;

 myints[x] = test;

 }

 for(x= 0; x < len; x++)

 {

 test = myints[x];

 test/=2;

 myints[x] = test;

JavaC++PerformanceComparison.doc 10/16/17 24

 }

 long end_time = System.currentTimeMillis();

 long time_required = end_time - start_time;

 return time_required;

 }

 //driver for the mutable object test

 public void doMutableObjectTest()

 {

 int reps = 500;

 int calls = 500000;

 long total_time = 0;

 System.out.println("Performing mutable object test for " + calls + "

method calls.");

 System.out.println("This test will create an object which has a single

integer member");

 System.out.println("variable and a public method which, when called,

increments this");

 System.out.println("member. The class of this object will also have a

static method");

 System.out.println("which takes a mutable object as its lone parameter.

This allows us");

 System.out.println("to test the efficiency with which the language

passes parameters by");

 System.out.println("reference. The test creates a mutable object and

passes it to the");

 System.out.println("class method which then invokes the mutator method

on the passed object.");

 total_time = 0;

 for(int x= 0; x < reps; x++)

 {

 total_time += mutableObjectTest(calls);

 }

 System.out.println("");

 System.out.println("Average time for mutable object test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

 This test is designed to test static method calls and simple

 object state change calls. While clocking it will create a

 new object and call a static method which will call a mutator

 method on the object for the specified repetitions.

 **/

 public long mutableObjectTest(int reps)

 {

 long start_time = System.currentTimeMillis();

 MutableObj mo = new MutableObj();

JavaC++PerformanceComparison.doc 10/16/17 25

 for(int x = 0; x < reps; x++)

 {

 MutableObj.mutateObject(mo);

 }

 long end_time = System.currentTimeMillis();

 return end_time - start_time;

 }

 //driver for the polymorphic call test

 public void doPolymorphicTest()

 {

 int reps = 500;

 int calls = 500000;

 long total_time = 0;

 System.out.println("Performing polymorphic test for " + calls + "

method calls.");

 System.out.println("This test is designed to test the efficiency with

which the language");

 System.out.println("handles method invocations which require dynamic

binding. The test");

 System.out.println("creates a derived class object and assigns it to a

base class pointer.");

 System.out.println("It then invokes a virtual method on the base class

object which will ");

 System.out.println("be handled by the overriding derived class method.

Dynamic binding is");

 System.out.println("crucial to engineering reusable object oriented

components.");

 for(int x= 0; x < reps; x++)

 {

 total_time += polymorphicTest(calls);

 }

 System.out.println("");

 System.out.println("Average time for polymporphic test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

 The purpose of this test is to determine the efficiency with which

 the language processes method calls which require dynamic binding.

 **/

 public long polymorphicTest(int reps)

 {

 long start_time = System.currentTimeMillis();

 BaseObject obj = new DerivedObject();

 for(int x = 0; x < reps; x++)

 {

 obj.polymorphicCall();

JavaC++PerformanceComparison.doc 10/16/17 26

 }

 long end_time = System.currentTimeMillis();

 return end_time - start_time;

 }

 //driver for the dynamic type test

 public void doDynamicTypeTest()

 {

 int reps = 500;

 int objects = 500000;

 long total_time = 0;

 System.out.println("Performing dynamic type test for " + objects + "

objects.");

 System.out.println("This test is designed to determine how efficiently

the language allows ");

 System.out.println("a program to determine if an object is an instance

of a particular class");

 System.out.println("at run-time. This type of testing is done in java

via the instanceof ");

 System.out.println("operator which is a built-in language feature. The

test will create an");

 System.out.println("instance of a derived class object and store it in

a base class pointer.");

 System.out.println("It will then perform the dynamic cast to test if

the object is a derived");

 System.out.println("class object. If it is, the test will call a

method which is defined in the ");

 System.out.println("derived class only. If it is not an error message

will be printed");

 for(int x = 0; x < reps; x++)

 {

 total_time += dynamicTypeTest(objects);

 }

 System.out.println("");

 System.out.println("Average time for dynamic type test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

 The purpose of this test is to determine the efficiency with which

 the language determines if an object is of a particular type.

 **/

 public long dynamicTypeTest(int reps)

 {

 long start_time = System.currentTimeMillis();

 BaseObject obj = new DerivedObject();

 for(int x = 0; x < reps; x++)

JavaC++PerformanceComparison.doc 10/16/17 27

 {

 if(obj instanceof DerivedObject)

 {

 ((DerivedObject)obj).derivedOnlyMethod();

 }

 else

 {

 System.out.println("Error: dynamic type test failed.");

 }

 }

 long end_time = System.currentTimeMillis();

 return end_time - start_time;

 }

 //driver for the floating point math test

 public void doFloatingPointTest()

 {

 int reps = 500;

 int elements = 100000;

 long total_time = 0;

 System.out.println("Performing floating point test for " + elements + "

elements.");

 System.out.println("This test will create an array of the specified

number of elements");

 System.out.println("it will then iterate through all elements in the

array four times.");

 System.out.println("The first time it will copy a double out of the

array, multiply it");

 System.out.println("by itself and copy it back into the array. The

second pass will copy");

 System.out.println("the element out of the array, divide it by 3.14

then copy it back into the array.");

 System.out.println("The third pass will copy the element out of the

array, add it to itself");

 System.out.println("and place it back in the array. The final pass

will copy each element");

 System.out.println("subtract 3.14 from it and place it back in the

array.");

 for(int x= 0; x < reps; x++)

 {

 total_time += floatingPointTest(elements);

 }

 System.out.println("");

 System.out.println("Average time for floating point test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

JavaC++PerformanceComparison.doc 10/16/17 28

 This test is designed to test the speed of array manipulation

 and basic mathematical functions for floating point types. While

 clocking it will create an array of the specified number of doubles

 and walk it four times. Each time it will pull out an element and

perform

 a mathematical operation, then it will replace the element

 in the array.

 **/

 public long floatingPointTest(int elements)

 {

 double temp = 0;

 int x = 0;

 //build an array of doubles

 double[] mydoubles = new double[elements];

 for(x=0; x < elements; x++)

 {

 mydoubles[x] = 1.7567;

 }

 //start the timer

 long start_time = System.currentTimeMillis();

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp *= temp;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp /= 3.14;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp += temp;

 mydoubles[x] = temp;

 }

 for(x = 0; x < elements; x++)

 {

 temp = mydoubles[x];

 temp -= 3.14;

 mydoubles[x] = temp;

 }

 long end_time = System.currentTimeMillis();

 long time_required = end_time - start_time;

 return time_required;

 }

JavaC++PerformanceComparison.doc 10/16/17 29

 //driver for the string manipulation test

 public void doStringTest()

 {

 int reps = 500;

 int strings = 10000;

 long total_time = 0;

 System.out.println("Performing string manipulation test for " + strings

+ " strings.");

 System.out.println("This test will copy a string into a temporary

string. It will then ");

 System.out.println("compare the two strings using a string sensitive

comparison. Next it ");

 System.out.println("will convert the temporary string to upper case.

It will then compare ");

 System.out.println("strings again.");

 for(int x = 0; x < reps; x++)

 {

 total_time += stringTest(strings);

 }

 System.out.println("");

 System.out.println("Average time for string manipulation test is " +

total_time/reps + " milliseconds for "+ reps + " repetitions.");

 System.out.println("");

 System.out.println("");

 }

 /**

 This test is designed to test the efficiency of string manipulations

 and comparisons.

 **/

 public long stringTest(int reps)

 {

 int x = 0;

 final String init_string = "Initial string for manipulation test";

 final String cmp_string = "Initial string for manipulation test";

 String tmp_string = "";

 String tmp_string2 = "";

 long start_time = System.currentTimeMillis();

 for(x = 0; x < reps; x++)

 {

 tmp_string = init_string;

 if(tmp_string.equals(cmp_string))

 {

 tmp_string2 = tmp_string.toUpperCase();

 if(tmp_string2.equals(cmp_string))

 {

 System.out.println("Test error strings should not be equal

anymore...");

 }

 }

 else

JavaC++PerformanceComparison.doc 10/16/17 30

 {

 System.out.println("Test error strings should be equal...");

 }

 }

 long end_time = System.currentTimeMillis();

 return end_time - start_time;

 }

}

JavaC++PerformanceComparison.doc 10/16/17 31

C.2 BASEOBJECT.JAVA

public class BaseObject

{

 public BaseObject()

 {

 m_counter = 0;

 }

 public void polymorphicCall()

 {

 System.out.println("Error call went to base class.");

 }

 protected int m_counter;

}

JavaC++PerformanceComparison.doc 10/16/17 32

C.3 DERIVEDOBJECT.JAVA

public final class DerivedObject extends BaseObject

{

 public DerivedObject(){};

 public void polymorphicCall()

 {

 m_counter++;

 }

 public void derivedOnlyMethod()

 {

 m_counter++;

 }

}

JavaC++PerformanceComparison.doc 10/16/17 33

C.4 MUTABLEOBJ.JAVA

public final class MutableObj

{

 public MutableObj(){m_counter = 0;}

 public static void mutateObject(MutableObj mo){mo.mutate();}

 public void mutate(){m_counter++;}

 private int m_counter;

}

